
  

Unsolvable Problems
Part One



  

Outline for Today

● Self-Reference Revisited

● Programs that compute on themselves.

● Self-Defeating Objects

● Objects “too powerful” to exist.

● The Fortune Teller

● Can you escape your fate?

● Why Do Programs Loop?

● … and can we eliminate loops?

● Undecidable Problems

● Something beyond the reach of algorithms.



  

Recap from Last Time



  

R and RE

● A language L is recognizable if there is a TM M with
the following property:

∀w ∈ Σ*. (M accepts w ↔ w ∈ L).

● That is, for any string w:

● If w ∈ L, then M accepts w.
● If w ∉ L, them M does not accept w.

– What does this mean?
● This is a “weak” notion of solving a problem.

● The class RE consists of all the recognizable
languages.



  

R and RE

● A language L is recognizable if there is a TM M with
the following property:

∀w ∈ Σ*. (M accepts w ↔ w ∈ L).

● That is, for any string w:

● If w ∈ L, then M accepts w.
● If w ∉ L, them M does not accept w.

– It might reject w, or it might loop on w.
● This is a “weak” notion of solving a problem.

● The class RE consists of all the recognizable
languages.



  

R and RE

● A language L is decidable if there is a TM M with
the following properties:

∀w ∈ Σ*. (M accepts w ↔ w ∈ L).

M halts on all inputs.

● That is, for any string w:

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● This is a “strong” notion of solving a problem.

● The class R consists of all the decidable languages.



  

The Universal TM

● The universal Turing machine, denoted UTM, is a
TM with the following behavior: when run on a
string ⟨M, w⟩, where M is a TM and w is a string,
UTM will

…   accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and 

…   loop on ⟨M, w⟩ if M loops on w.

● ATM is the language recognized by the universal
TM. This is the language

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }

●  UTM is a ??? for ATM.
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string ⟨M, w⟩, where M is a TM and w is a string,
UTM will

…   accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and 

…   loop on ⟨M, w⟩ if M loops on w.

● ATM is the language recognized by the universal
TM. This is the language

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }

●  UTM is a recognizer for ATM.



  

Self-Referential Programs

● Computing devices can compute on their
own source code:

Theorem: It is possible to construct
TMs that perform arbitrary computations

on their own source code.
● This allows us to write programs that

work on their own source code.



  What do each of these pieces of code do?

void cormorant() {
    string me = /* source code of
                 * cormorant
                 */;
    cout << me << endl;
}       

void cormorant() {
    string me = /* source code of
                 * cormorant
                 */;
    cout << me << endl;
}       

bool curlew(string input) {
    string me = /* source code of
                 * curlew
                 */;
    return input == me;
}

bool curlew(string input) {
    string me = /* source code of
                 * curlew
                 */;
    return input == me;
}

int avocet() {
    string me = /* source code of 
                 * avocet
                 */;
    int result = 0;
    for (char ch: me) {
        if (ch == 'a') result++;
    }
    return result;
}

int avocet() {
    string me = /* source code of 
                 * avocet
                 */;
    int result = 0;
    for (char ch: me) {
        if (ch == 'a') result++;
    }
    return result;
}
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New Stuf!



  

Part One: Self-Defeating Objects



  

A self-defeating object is an object whose
essential properties ensure it doesn’t exist.



  

Question: Why is there no largest integer?

Answer: Because if n is the largest integer,
what happens when we look at n+1?



  

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.

Contradiction! ■-ish

Self-Defeating Objects



  

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.

Contradiction! ■-ish

Self-Defeating Objects

We’re using n to
construct something that
undermines n, hence the

term “self-defeating.”

We’re using n to
construct something that
undermines n, hence the

term “self-defeating.”



  

An Important Detail



  

Claim: There is a largest integer.

Proof: Assume x is the largest integer.

Notice that x > x – 1.

So there’s no contradiction. ■-ish

Careful – we’re
assuming what we’re
trying to prove!

Careful – we’re
assuming what we’re
trying to prove!

How do we know there’s
no contradiction? We
just checked one case.

How do we know there’s
no contradiction? We
just checked one case.



  

Self-Defeating Objects

● If you can show

x exists → ⊥

then you know that x doesn’t exist. (This
is a proof by contradiction.)

● If you can show

x exists → ⊤

you cannot conclude that x exists. (This is
not a valid proof technique.)



  

Part Two: The Fortune Teller



  

The Fortune Teller

● A fortune teller appears who
claims they can see into the
future.

● For a nominal fee, the fortune
teller will tell you anything
you want to know about the
future.

● Of course, the fortune teller is
a lying liar who lies. No one
can see the future!

● The fortune teller makes a
living taking money from
unsuspecting townsfolk.

Someone needs to put an end
to this!



  

The Fortune Teller

● One day, a trickster arrives.
The trickster wants to expose
that the fortune teller is a
fraud.

● The trickster says the
following:

“I have a yes/no question
about the future. But

before I ask my question,
let’s talk payment.

If you answer ‘yes,’ then I’ll
pay you $42.

If you answer ‘no,’ then I’ll
pay you $137.”

● The fortune teller thinks for a
moment, then agrees.

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”



  

The Fortune Teller

● The trickster then asks
this question:

“Am I going to
pay you $137?”

● The fortune teller is
trapped!

● Why?

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”
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The Fortune Teller

● The payment scheme the fortune teller agreed to means

Fortune Teller Says Yes    ↔    Trickster Pays $42.

● The trickster’s question to the fortune teller means

Fortune Teller Says Yes    ↔    Trickster Pays $137.

● Putting this together, we get

●



  

The Fortune Teller

● The fortune teller is a self-defeating object.

● The trickster’s strategy is to couple the fortune teller’s
behavior to what the future holds.

● The trickster’s behavior is chosen in advance to make the
fortune teller’s answer wrong.

● Therefore, the fortune teller can’t answer all questions
about all people in the future.

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”



  

Part Three: Why Do Programs Loop?



  

Thoughts on Loops

● In practice, the programs we write sometimes
go into infnite loops.

● In Theoryland, Turing machines are allowed to
loop. This happens if they don’t accept and
don’t reject.

● Question: Why are infnite loops possible?

● Or rather: are infnite loops an inherent part of
computation, or are they some weird sort of
“accident” in how we program computers?



  

Thoughts on Loops

● [Major] Theorem: The language ATM is
recognizable, but undecidable.

● There’s a recognizer for ATM (specifcally, the
universal Turing machine UTM).

● It is impossible to build a decider for this language.

● Stated diferently, there’s a program we can write
(a universal TM) that has to loop infnitely on some
inputs.

● Goal: Prove this theorem, and explore its
theoretical and philosophical implications.



  

ATM Revisited

● As a refresher, the language ATM is

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● The universal TM UTM has the following behavior
when given as input a TM M and a string w:

● If M accepts w, then   UTM accepts ⟨M, w⟩.
● If M rejects w,  then   UTM rejects ⟨M, w⟩.
● If M loops on w, then   UTM loops on ⟨M, w⟩.

● UTM is a recognizer for ATM, but because of that last
case it’s not a decider for ATM.



  

ATM Revisited

● As a refresher, the language ATM is

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● Given a TM M and a string w, a decider D for ATM 
would need to have this behavior:

● If M accepts w, then     D accepts ⟨M, w⟩.
● If M rejects w,  then     D rejects  ⟨M, w⟩.
● If M loops on w, then     D rejects ⟨M, w⟩.

● This is basically the same set of requirements as
UTM, except for what happens if M loops on w.

● Our goal is to prove that there is no way to build a
program that meets these requirements.

?

?

?
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ATM Revisited

● As a refresher, the language ATM is

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● Given a TM M and a string w, a decider D for ATM 
would need to have this behavior:

● If M accepts w, then     D accepts ⟨M, w⟩.
● If M rejects w,  then     D rejects  ⟨M, w⟩.
● If M loops on w, then     D rejects ⟨M, w⟩.

● This is basically the same set of requirements as
UTM, except for what happens if M loops on w.

● Our goal is to prove that there is no way to build a
program that meets these requirements.



  

ATM Revisited

● We can envision a decider for ATM as a function

bool willAccept(string fn, string input)

that takes as input the source code of a function (fn) and a
string representing an input to that function (input).

● It then does the following:

● If fn(input) returns true, willAccept(fn, input) returns true.

● If fn(input) returns false, willAccept(fn, input) returns false.

● If fn(input) loops, then willAccept(fn, input) returns false.

● We’re going to show it’s impossible to write a function that
actually does this. But for now, let’s just explore what such
a decider would do.



  
For each of these instances, what does
willAccept(function, input) return?

function = "bool f(string input) {
  if (input == "") return false;
  return input[0] == 'a';
}";

input = "abbababba";

willAccept(function, input) = ?

function = "bool f(string input) {
  if (input == "") return false;
  return input[0] == 'a';
}";

input = "abbababba";

willAccept(function, input) = ?

function = "bool g(string input) {
  while (true) {
    input += input;
  }
}";

input = "yay! ";

willAccept(function, input) = ?

function = "bool g(string input) {
  while (true) {
    input += input;
  }
}";

input = "yay! ";

willAccept(function, input) = ?

function = "bool h(string input) {
  int n = input.length();
  while (n > 1) {
    if (n % 2 == 0) n /= 2;
    else n = 3*n + 1;
  }
  return true;
}";
 

input = /* 10137 a's */;

willAccept(function, input) = ?

function = "bool h(string input) {
  int n = input.length();
  while (n > 1) {
    if (n % 2 == 0) n /= 2;
    else n = 3*n + 1;
  }
  return true;
}";
 

input = /* 10137 a's */;

willAccept(function, input) = ?
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● Surprising fact: until 2019, no one knew whether there
were integers x, y, and z where

x3 + y3 + z3 = 33.

● A heavily optimized computer search found this
answer:

x = 8,866,128,975,287,528
y = -8,778,405,442,862,239
z = -2,736,111,468,807,040

● As of November 2024, no one knows whether there are
integers x, y, and z where

x3 + y3 + z3 = 114.

Deciding ATM



  

● Consider the language

L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x3 + y3 + z3 = n }

● Here’s code for a recognizer to see whether such a triple exists:

bool hasTriple(int n) {                  
  for (int max = 0; ; max++)             
    for (int x = -max; x <= max; x++)    
      for (int y = -max; y <= max; y++)  
        for (int z = -max; z <= max; z++)
          if (x*x*x + y*y*y + z*z*z == n)
            return true;                 
}                                        

● Imagine calling willAccept(/* hasTriple code */, 114).

● If such a triple exists, willAccept returns true.

● If no such triple exists, willAccept returns false.

● Key Intuition: However willAccept is implemented, it has to be  clever enough to
resolve open problems in mathematics!

Deciding ATM



  

Why is ATM Hard?

● Intuition: A decider for ATM would be able to…

● … determine whether the hailstone sequence terminates
for any input. (Write a recognizer that runs the hailstone
sequence, then feed it into the decider for ATM.)

● … see if any number is the sum of three cubes. (Write a
recognizer that tries all infnitely many triples of
integers, then feed it into the decider for ATM.)

● … and much, much more.

● In other words, this seemingly simple problem of “is
this program going to terminate?” accidentally scoops
up a bunch of other seemingly harder problems.



  

Part Four: Putting It All Together



  

To Recap

● We’re assuming that, somehow, someone wrote a
function

bool willAccept(string function, string input); 

that takes the code of a function and an input to that
function, then

● returns true if function(input) returns true, and

● returns false if function(input) doesn’t return true.

● Goal: Show that this decider is “self-defeating;” its
power is so great that it undermines itself.

● Idea: Convert the fortune teller story into a program.



  

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”

Trickster pays $42 if the
fortune teller answers “yes.”

Trickster pays $137 if the
fortune teller answers “no.”



bool willAccept(string function, string input) {
   // Returns true if function(input) returns true.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

  return !willAccept(me, input);
}

bool willAccept(string function, string input) {
   // Returns true if function(input) returns true.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

  return !willAccept(me, input);
}
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}

A self-defeating
object.

A self-defeating
object.

Using that object
against itself.

Using that object
against itself.



  

bool willAccept(string function, string input) {
   // Returns true if function(input) returns true.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

  return !willAccept(me, input);
}

bool willAccept(string function, string input) {
   // Returns true if function(input) returns true.
   // Returns false otherwise.
}
 

bool trickster(string input) {
string me = /* source code of trickster */;

  return !willAccept(me, input);
}

“The largest
integer n.”

“The largest
integer n.”

“The integer
n + 1.”

“The integer
n + 1.”

  Theorem: There is no largest integer.

  Proof sketch: Suppose for the sake of contradiction
 that there is a largest integer. Call that integer n.

 Consider the integer n+1.

  Notice that n < n+1.

 But then n isn’t the largest integer.

 Contradiction! ■-ish



  

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is a decider D for ATM.
We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns
true if function(w) returns true and returns false otherwise. Given this, consider
this function trickster:

        bool trickster(string input) {
            string me = /* source code of trickster */;
            return !willAccept(me, input);
        } 

Since willAccept decides ATM and me holds the source of trickster, we know that

willAccept(me, input) returns true  if and only if  trickster(input) returns true.

Given how trickster is written, we see that

willAccept(me, input) returns true if and only if trickster(input) doesn’t return true.

This means that

trickster(input) returns true  if and only if  trickster(input) doesn’t return true.

This is impossible. We’ve reached a contradiction, so our assumption was wrong
and ATM is undecidable. ■
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What Does This Mean?

● In one fell swoop, we've proven that
● ATM is undecidable; there is no general

algorithm that can determine whether a TM
will accept a string.

● R ≠ RE, because ATM ∉ R but ATM ∈ RE.

● What do these three statements really
mean? As in, why should you care?



  

ATM ∉ R

● What exactly does it mean for ATM to be
undecidable?

Intuition: The only general way to
fnd out what a program will do is to

run it.
● As you'll see, this means that it's

provably impossible for computers to be
able to answer most questions about
what a program will do.



  

ATM ∉ R

● At a more fundamental level, the existence of
undecidable problems tells us the following:

There is a diference between what is true and
what we can discover is true.

● Given a TM M and a string w, one of these two
statements is true:

M accepts w              M does not accept w

But since ATM is undecidable, there is no algorithm
that can always determine which of these
statements is true!



  

R ≠ RE

● Because R ≠ RE, there is a diference
between decidability and recognizability:

In some sense, it is fundamentally
harder to solve a problem than it is

to check an answer.
● There are problems where, when the

answer is “yes,” you can confrm it (run a
recognizer), but where if you don’t have
the answer, you can’t come up with it in
a mechanical way (build a decider).



  

Next Time

● Why All This Matters
● Important, practical, undecidable problems.

● Intuiting RE
● What exactly is the class RE all about?

● Verifers
● A totally diferent perspective on problem solving.

● Beyond RE
● Finding an impossible problem using very familiar

techniques.
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